mirror of
https://github.com/nottinghamtec/PyRIGS.git
synced 2026-01-19 06:22:16 +00:00
Added printing requirements
This commit is contained in:
127
reportlab/pdfgen/pathobject.py
Normal file
127
reportlab/pdfgen/pathobject.py
Normal file
@@ -0,0 +1,127 @@
|
||||
#Copyright ReportLab Europe Ltd. 2000-2012
|
||||
#see license.txt for license details
|
||||
#history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/pdfgen/pathobject.py
|
||||
__version__=''' $Id$ '''
|
||||
__doc__="""
|
||||
PDFPathObject is an efficient way to draw paths on a Canvas. Do not
|
||||
instantiate directly, obtain one from the Canvas instead.
|
||||
|
||||
Progress Reports:
|
||||
8.83, 2000-01-13, gmcm: created from pdfgen.py
|
||||
|
||||
"""
|
||||
|
||||
from reportlab.pdfgen import pdfgeom
|
||||
from reportlab.lib.rl_accel import fp_str
|
||||
|
||||
|
||||
class PDFPathObject:
|
||||
"""Represents a graphic path. There are certain 'modes' to PDF
|
||||
drawing, and making a separate object to expose Path operations
|
||||
ensures they are completed with no run-time overhead. Ask
|
||||
the Canvas for a PDFPath with getNewPathObject(); moveto/lineto/
|
||||
curveto wherever you want; add whole shapes; and then add it back
|
||||
into the canvas with one of the relevant operators.
|
||||
|
||||
Path objects are probably not long, so we pack onto one line
|
||||
|
||||
the code argument allows a canvas to get the operatiosn appended directly so
|
||||
avoiding the final getCode
|
||||
"""
|
||||
def __init__(self,code=None):
|
||||
self._code = (code,[])[code is None]
|
||||
self._code_append = self._init_code_append
|
||||
|
||||
def _init_code_append(self,c):
|
||||
assert c.endswith(' m') or c.endswith(' re'), 'path must start with a moveto or rect'
|
||||
code_append = self._code.append
|
||||
code_append('n')
|
||||
code_append(c)
|
||||
self._code_append = code_append
|
||||
|
||||
def getCode(self):
|
||||
"pack onto one line; used internally"
|
||||
return ' '.join(self._code)
|
||||
|
||||
def moveTo(self, x, y):
|
||||
self._code_append('%s m' % fp_str(x,y))
|
||||
|
||||
def lineTo(self, x, y):
|
||||
self._code_append('%s l' % fp_str(x,y))
|
||||
|
||||
def curveTo(self, x1, y1, x2, y2, x3, y3):
|
||||
self._code_append('%s c' % fp_str(x1, y1, x2, y2, x3, y3))
|
||||
|
||||
def arc(self, x1,y1, x2,y2, startAng=0, extent=90):
|
||||
"""Contributed to piddlePDF by Robert Kern, 28/7/99.
|
||||
Draw a partial ellipse inscribed within the rectangle x1,y1,x2,y2,
|
||||
starting at startAng degrees and covering extent degrees. Angles
|
||||
start with 0 to the right (+x) and increase counter-clockwise.
|
||||
These should have x1<x2 and y1<y2.
|
||||
|
||||
The algorithm is an elliptical generalization of the formulae in
|
||||
Jim Fitzsimmon's TeX tutorial <URL: http://www.tinaja.com/bezarc1.pdf>."""
|
||||
|
||||
self._curves(pdfgeom.bezierArc(x1,y1, x2,y2, startAng, extent))
|
||||
|
||||
def arcTo(self, x1,y1, x2,y2, startAng=0, extent=90):
|
||||
"""Like arc, but draws a line from the current point to
|
||||
the start if the start is not the current point."""
|
||||
self._curves(pdfgeom.bezierArc(x1,y1, x2,y2, startAng, extent),'lineTo')
|
||||
|
||||
def rect(self, x, y, width, height):
|
||||
"""Adds a rectangle to the path"""
|
||||
self._code_append('%s re' % fp_str((x, y, width, height)))
|
||||
|
||||
def ellipse(self, x, y, width, height):
|
||||
"""adds an ellipse to the path"""
|
||||
self._curves(pdfgeom.bezierArc(x, y, x + width,y + height, 0, 360))
|
||||
|
||||
def _curves(self,curves,initial='moveTo'):
|
||||
getattr(self,initial)(*curves[0][:2])
|
||||
for curve in curves:
|
||||
self.curveTo(*curve[2:])
|
||||
|
||||
def circle(self, x_cen, y_cen, r):
|
||||
"""adds a circle to the path"""
|
||||
x1 = x_cen - r
|
||||
y1 = y_cen - r
|
||||
width = height = 2*r
|
||||
self.ellipse(x1, y1, width, height)
|
||||
|
||||
def roundRect(self, x, y, width, height, radius):
|
||||
"""Draws a rectangle with rounded corners. The corners are
|
||||
approximately quadrants of a circle, with the given radius."""
|
||||
#use a precomputed set of factors for the bezier approximation
|
||||
#to a circle. There are six relevant points on the x axis and y axis.
|
||||
#sketch them and it should all make sense!
|
||||
t = 0.4472 * radius
|
||||
|
||||
x0 = x
|
||||
x1 = x0 + t
|
||||
x2 = x0 + radius
|
||||
x3 = x0 + width - radius
|
||||
x4 = x0 + width - t
|
||||
x5 = x0 + width
|
||||
|
||||
y0 = y
|
||||
y1 = y0 + t
|
||||
y2 = y0 + radius
|
||||
y3 = y0 + height - radius
|
||||
y4 = y0 + height - t
|
||||
y5 = y0 + height
|
||||
|
||||
self.moveTo(x2, y0)
|
||||
self.lineTo(x3, y0) #bottom row
|
||||
self.curveTo(x4, y0, x5, y1, x5, y2) #bottom right
|
||||
self.lineTo(x5, y3) #right edge
|
||||
self.curveTo(x5, y4, x4, y5, x3, y5) #top right
|
||||
self.lineTo(x2, y5) #top row
|
||||
self.curveTo(x1, y5, x0, y4, x0, y3) #top left
|
||||
self.lineTo(x0, y2) #left edge
|
||||
self.curveTo(x0, y1, x1, y0, x2, y0) #bottom left
|
||||
self.close()
|
||||
|
||||
def close(self):
|
||||
"draws a line back to where it started"
|
||||
self._code_append('h')
|
||||
Reference in New Issue
Block a user